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Lattice Boltzmann algorithm for three-dimensional simulations of plasma turbulence
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A lattice Boltzmann algorithm to study the three-dimensional electrostatic-turbulence dynamics in thermo-
nuclear plasmas is derived. The ion continuity, momentum, and pressure equations are reproduced with the
electrons being described by the adiabatic response. The numerical stability is discussed. Applications to the
study of two-dimensional turbulence are present8d063-651X96)00709-X]

PACS numbds): 02.70—c, 52.35.Kt

I. INTRODUCTION libria, such as those characterizing tokamak plasmas, it can
indeed be shown, on the basis of linear theldry, 16|, that
The particle and heat transport across magnetic surfacérongly anisotropic vortices may be generated, with a radial
in controlled thermonuclear devices is due to turbulent pro€Xtension of the order of the characteristic length of the equi-
cesses associated with the presence of small-scale instabifrium ion temperature profild.+=—(d In T9dr)~* and
ties, in particular those belonging to the drift branch andmuch larger than the extension in the poloidal direction,

destabilized by the free-energy sources related to the pre&hiCh' for the most unstable modes, is of the order of a few

X . ion Larmor radiipj=uv, /Q;, with vy, being the ion thermal
ence of density and temperature gradidrifs Among such velocity and(); the ion Larmor frequency. The presence of

instabilities a particular relevance is attributed to the ion temy,ch structures may have a strong impact on the understand-

perature gradientiTG) mode, which is driven unstable by ing of turbulent transport. The global energy confinement
the combined effect of the equilibrium-magnetic-field inho-time is indeed expected to increase more weakly with the
mogeneity and the ion temperature gradight4]. device dimension than in the case of short radial correlation
The behavior of the mode in the nonlinear regime hadength turbulence. In order to describe in a realistic way such
been investigated within the framework of conventional fluida situation, 3D simulations are required that should resolve
simulations[5-8], gyrokinetic particle simulation§9-11],  radial wavelengths ranging from the macroscopic device di-
or gyrofluid simulationg12]. The aim of these analyses has Mension ¢=Ly) to the shortest wavelengths at which dissi-
been primarily to determine the magnitude of the turbulenP@tion takes place, which, for realistic plasma parameters,

heat flux and its scaling with the plasma parameters both iﬁv'” be a fractu?n of the ion Larmor rad|u.s, with the wave-
: . I lengths of the linearly unstable modes being of the order of a
the case of fixed ion equilibrium temperature profifé and few Larmor radii.

in the case in whicfT{is free to evolve. Local flattening of | order to perform high-resolution 3D simulations, a par-
the temperature profile was, e.g., observed in Hé&{§] as a ticularly promising method is that based on the lattice Bolt-
result of the turbulent heat flux bringing the mode close tozmann equatiodLBE) [17,18. The macroscopic dynamics,
marginal stability. Even though the quasilinear estimate ofdescribed by a set of fluid equations, is simulated starting
ten predicts the correct order of magnitude of the turbulenfrom the microscopic description of the system. To this aim,
heat flux, a significant departure from such an estimate hag population of particles moving on a discrete lattice is con-
been observed in many cases. For example, in Béfthe  sidered. Particles that arrive at the same point undergo a
formation of large-scale coherent structures was observedpllision, with the collision operator chosen in such a way as
leading to the reduction of the turbulent transport. to conserve the particle number and the momentum. The key
Most of the above simulations are two dimensio(#D) issue in the derivation of the LBE algorithm is the choice of
and refer to model 1D equilibria such as a plasma slab or ge form of the equilibrium distribution function. It is written
cylinder with circular cross section, where the effect of linearas a combination of the low-order fluid momeritiensity,
toroidal coupling among different poloidal harmonics is ab-momentum, and pressyrsuch that the fluid equations on
sent. In such a case turbulence is almost isotropic in théhe macroscopic scalése., on a space scale larger than the
plane perpendicular to the equilibrium magnetic field. Morelattice spacing and a time scale longer than the time between
recently, attention has been focused on the problem of th&vo collisiong are exactly recovered. It is important to note
formation and evolution of strongly anisotropic structuresthat the microscopic dynamics is, in principle, not related to
that have been observed in gyrokinetic particle simulationshe true microscopic particle dynamics and, in this respect,
[10]. Anisotropic turbulence has also been meas(ii&fion  the present approach differs from that employed in gyroki-
the Tokamak Fusion Test Reactor tokania4]. In 2D equi-  netic simulationg9—11], which solve the exact equation of
motion of the particles. However, in many situations, the
turbulence dynamics is adequately described by the macro-
*Also at Dipartimento di Fisica UniversitdTor Vergata” and  scopic plasma behavior. This is, e.g., the case of the ITG
Instituto Nazionale di Fisica Nucleare, Sezione di Roma I, via E.mode well above the linear threshold for instability: in such
Carnevale, 1-00173, Roma, Italy. a case the details of mode-particle resonance, which are im-
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portant in determining the threshold, play a minor role. Un-quency. Note that the first six terms on the right-hand side
der such a condition it may be convenient to employ the LBEcorrespond to the finite-Larmor-radius effedy z) and
approach, which has the advantage of an easy implementahould be retained since they cancel part of the contribution
tion on massively parallel computers. The algorithm hasassociated with the inertia terf3], while the last term cor-
been indeed successfully used for simulations of theaesponds to the effect of perpendicular viscosity dissipation.
Rayleigh-Baard convectiorj19] on the APE100 computer Equation(3) differs from the pressure equation used in Ref.
[20], as well as to a plasma-physics model, such as the mag8] by small corrections associated with the compressibility
netohydrodynamics modgR1]. term that do not alter the instability dynamics in both the

The primary aim of the present paper is to show that dinear and the nonlinear phase.

LBE algorithm can be derived for the study of 3D plasma The electrostatic potentiab is determined by the Poisson
dynamics in the electrostatic limit and within the fluid ap- equation, which, in the limik, Ap<€1, with k;, being the
proximation. The numerical stability of the algorithm is in- perpendicular wave vector of the perturbed electrostatic po-
vestigated showing that, for an appropriate choice of the patential and\p the Debye length, reduces to the quasineutral-
rameters, the algorithm is numerically stable. Preliminaryity equation

applications to the study of 2D turbulence will be also pre-

sented. Ni=nNe. ()

The structure of the paper is the following. In Sec. Il the o ) )
physical model describing the ITG mode is briefly reviewedTh‘? electron density is assumed to be described by the adia-
and the linear stability is discussed. In Sec. Ill the latticePatic response
Boltzmann method is introduced and the three-dimensional
algorithm for the magnetized plasmas is derived. The nu- Ne=n<Y
merical stability is discussed in Sec. IV. The numerical re-
sults are presented in Sec. V and compared with the analyti-
cal results of the linear stability analysis. ConcludingWhereT¢? andngf are the equilibrium electron temperature

es

1+_|_—gq

: (6)

remarks are given in Sec. VI. and density, respectively. This assumption is correct as long
as the trapped electron response is small.
Il TWO-ELUID PLASMA MODEL Equations(1)—(6) are the usual two-fluid plasma equa-

tions employed to analyze the dynamics of ITG modes in
In this section the fluid equations describing the ITGthree dimensions. In the present paper we will discuss the
mode are briefly described. We refer to Rdi4,8] for a  numerical implementation of the algorithm in the 2D limit.
complete discussion of the model. The basic equations arBuch a case has been studied in R&fand it is worthwhile
the continuity, momentum, and pressure equations for theecalling the main results of the linear stability analysis.

ions, In the 2D limit the parallel ion dynamics is neglected by
choosing a perturbation withb-V=0. Thus, from Eq.(2),
% NV v=0 B v;;=0 and the fluid motion occurs in a plane perpendicular to
dt ' i the equilibrium magnetic field.

As shown in Refs[4,8], in the low-frequency limit, Eqgs.

dv; (1) and(3) reduce to
m;n; H=—Vpi+eni(—qu+vi><B)—V'Hi, (2)

~ ~ €T R 2%
d 0t¢)—26T07y¢—27 (?yp_O')tV ¢,
p.

TR AL (3

; Bx}_i S a1 i g
Here the subscript refers to the ionsg/dt=d/dt+v;-V; o T'V ¢ T L3P ] T L9yP.3y9]
m;, n;, andv, are, respectively, the mass, density, and mean (D,—D,) A
velocity; ¢ is the electrostatic potentid is the equilibrium =— 1 "2 y45_D,V*s, )
magnetic field, ang; the classical thermal conductivity. The T
expression for the ion stress tensor is given d§] . R
ap+[¢.p]1=D,V?p, ®

Pi -
;= — ¢ [2b(b-V)(vi, Xb) ~2(bX V)vib—(VXV)D  where d=(ed/T)(Lr/p), p=(Pi/Pf(Lr/ps), L=
—(d InT8Ydr) "%, andps=p;7* with 7=TEYT®. In order
to reproduce the typical situation of the toroidal geometry
within the framework of a two-dimensional case, an equilib-
rium magnetic fieldB=Bb with a constant directiob and a
_i ) ﬂV v 4) modulus B=B(x), such thatVx(B/B%)=-2/(BR)Y, has
10 Vi Q7 T been considered, witR being the major radius of the torus.
In Egs.(7) and(8) the time and space variables are normal-
whereb=B/B, V is the gradient operator, the suffix () ized respectively toL{/Cs and to ps, er=L+{/R,
indicates the component perpendiculparalle) to the equi-  [f,g]=d,fd,9—d,fd.g, D,=3w;;L{/10C,,

librium magnetic field, andv; is the ion-ion collision fre- D,= x;L1/C¢p2, andCe=vy; 72

B0V XV 1= 5 [V, (%, Xb)+ (DX Vv, ]
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FIG. 1. Linear growth rate normalized to the ratig/C versus kyps.,kyps), whereLt=—(d In T;/dr) ", Ci=vy 72 7=TE¥T9, and
pS:pirm. k, andk, are the components of the wave vector, perpendicular to the equilibrium magnetic field. Also shown are the result of
Eq. (9) for =12, ¢y=0.025, and two different values of the classical dissipati@nD,=D,=0.023, andb) D;=D,=0.046.

In Eq. (7) the first term comes from the temporal partial relaxes toward a local equilibrium distribution function. The
derivative of the perturbed ion density. The next two termschoice of the equilibrium distribution function is the crucial
are the contributions t& -n;v; coming from theEXB drift ~ point in the derivation of the LBE algorithm. It is written as
and the diamagnetic drift, respectively, and they are assoca combination of the low-order fluid moments chosen in such
ated with the inhomogeneity of the equilibrium magnetica way that the macroscopic dynamics, described by the fluid
field. The terms including th®, coefficient are related to equations, is correctly reproduced. The lattice dimenglon
the viscosity, while the remaining contributions are related tds chosen in order to ensure the isotropy of the macroscopic
the polarization drift. Upon linearizing and Fourier trans- system simulated by the LBE.

forming (9,= —iw, V=ik,) Egs.(7) and(8), the following In the case of 3D simulations, considered in the present

dispersion relation is obtained: section, a

face-centered-hypercubig FCHC)  four-

2

(1+Kk?) w2+ f+2eT

ky+i[ D1k} + Dok (1+ kﬁ)]] )

dimensional lattice must be used. Each quantity is assumed
to depend only on the first three coordinates, associated with
the three spatial variables, and to be constant along the fourth

(unphysical direction. On each siteh)=24 populations of

+ =0.

2e7 . ki
T k)2/_ DlDZkE+ |kyki( 26TD2+ Dl 7

particles{N;,i=1,2,. .. b} are defined with velocitieg; , ,
i=1,2,...,b: a=1,...,D}. In the following, the Greek

subscripts represent the components of a four-dimensional
©) vector, while the usual notatiov represents a three-

The growth ratey obtained by solving E9) is shown in
Fig. 1 vs kyps,Kyps) for 7=12, &;=0.025, and two values
of the classical dissipatiob;=D,= +0.023[Fig. 1(a)] and
D,=D,=0.046[Fig. 1(b)]. It is important to stress that clas-

dimensional vector. As it will be shown below, in order to
reproduce the two-fluid model thé&l; populations must

sical dissipation weakly affects the most unstable long-
wavelength modes. Equati@8) yields also a threshold ia;
for the mode destabilization, given, fkr =0, by Oser<2/7.

lIl. LATTICE BOLTZMANN EQUATION
FOR MAGNETIZED PLASMAS

The lattice Boltzmann equatidd 7] is a numerical tech-
nigue that has been used to integrate the Navier-Stokes equa-
tion [18,19. The macroscopic dynamics is simulated by a
fictitious microscopic system of particles moving on a dis-
creteD-dimensional lattice, as schematically shown in Fig. 2
for the casé® =2. The elementary process corresponds to the

particle propagation between each site and one oflthe
neighboring sitegwhich depends on the orientation of the
particle velocity, and the collision between particles that

arrive at the same time in a given site. The collision operator FIG. 2. Discrete two-dimensional lattice. On each shie6
must satisfy the conditions of particle-number and momenpopulations of particle&N; , i=1, ..., g are defined with velocities
tum conservation. Under the effect of collisions, the systenic, i=1, ... .8, joining the site with the six neighboring sites.
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evolve in time according to propagation and collision rules, Generally, the local equilibrium population is a function
which can be written as of the macroscopic variables. The mass dengjtthe mo-
mentum densityd, and the thermal pressuge can be ex-
pressed, in lattice units, in terms of linear combinations of
Ni(r+Arg ’HAt):Ni(r’tH”cAtZl AjIN;(r,t) the microscopic variable®\; (the normalizationm;=1 is

: considered in the following for the sake of simpligity

b

b

—No(r,1)]+ By, BiiNi(r,1), 24 2
) j=1 N p:E Ni, J:ZL CiNiv pEJ4:i:E]_ Ci4Ni'
(10

) ) ) ) In order to reproduce the fluid equations, the expression of
r being the coordinate of the sitdr|c| and At the micro- N9 must be chosen as

scopic steps, physically related to the mean free path and to

the time between two collisions, respectively, witkr NP9= 23{p+23,Ci 0+ 3[Qiaplal g~ Qisal ,v,1—12pQiyq}
= (2T¢¥m;)¥2At, v, being the collision frequency;; the . )

collision matrix, Ni the value of the populatiol; at the +5Qiapllag, (14
local thermodynamic equilibrium, andB,=Q;At with o

Qi=Qi(x)=eB)(/x)/mi. a o where the repeated indices are summed,=J,/p,

The collision matrixA;; must satisfy the mass and mo- Qiap=CiaCip™ 2 9ap, andllis thellg  tensor expressed in

mentum conservation laws and appropriate symmeftigs Iattllce L:jn'ts' btain th o of the phvsical variabl
and has the same expression previously employed for simuh r}l?lr ertoo t?mt e (?xpres_smn oft ip y5|fca va(gl.a es,
lating the Navier-Stokes equation. It is possible to sfigqg e following scale transformation must be performed:

that Aj; can be written in terms of just one parameter

; L X i A
connected to the kinematic viscosityby p—p %3 V—V A—Z (15
1 1 1) o
V=— o—— <. m; T
3\ 6 J—J W, p—>2p ﬁ, (16)
The matrixA;; is evaluated in Ref.24].
The matrixB;; , which accounts for the Lorentz force, has (Ar)? A~ A m,
the following explicit expression in terms of the equilibrium vov e = Ar(AD)2 (17
magnetic field vectob:
With such a choice, the physical variables satisfy the equa-
Bij :%b'CiXCj . (12) tions
Note that in the numerical evolution of the LBE the temporal p
variable will be normalized tat and the spatial variable to E+V~J=0. (18
Ar (lattice unitg, but, in order to discuss the fluid-equations
derivation, it is convenient to maintain explicit the depen- 93 Ted e
dence omAr andAt. — +[(v-V)I+IV-V)]=— — Vp—-Vp+ — IXB
In order to explicitly show that Eq10) correctly repro- at m; m;
duces the two-fluid model, it is necessary to derive the asso- +[V2I+1V(V.0)]-V
ciated macroscopic equations by the usual multiscale expan- 2
sion of the LBE[17] similar to the well known Chapman- Mg R, (19

Enskog [25] expansion of the kinetic equation. It is

important to note that in the LBE formalism, the collision ap )

time (v; 1) and the discrete time step\{) are assumed to be ¢ THv-V)p+p(V-v)]=2Vp. (20
equal(i.e., v;At=1). Thus the continuous limiAt—0) and

the multiscale expansion, made in order to derive the macEquations(18)—(20) coincide with Eqs(1)—(3), except for
roscopic equations, are taken simultaneously. The expansiahe compressibility term in the pressure equation. The effect
paramete(e) is the ratio between the microscopic time scaleof such a term is negligible as long as1.

v: ! and the time scale of the macroscopic variables. Space

and time derivatives are ordered in termseads Lattice Boltzmann equation in the 2D limit

V=0(e)Ar 1, 4,=0(e)At 1 (13 The lattice Boltzmann algorithm described so far is able
to simulate the 3D ITG mode dynamics. In the present paper

Furthermore, we assunfe;At=0(e). Formally, the effect we will consider the application to the 2D limit. To this aim,
of viscosity enters ab(€?) for perturbations characterized by it is convenient to consider the reduction of the lattice Bolt-
the typical length scale *Ar. Nevertheless, for perturba- zmann algorithm to the two-dimensional dynamics.
tions on smaller scale *?Ar, the viscosity term enters at In order to reproduce the macroscopic equatiGh®)—
O(e) and, properly, provides an energy sink for the high(20) in two dimensions for the mass density, the momentum
wave numbers. density, and the pressure field, it is convenient to consider
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the three-dimensional lattice obtained by the projection of; TS e
the FCHC lattice on the hyperplane,y,z) (the so-called —-+[(v-V)J+J(V-v)]=— = Vp—Vp+ —IxXB
pseudo-four-dimensional model ! !

The original 24 vectorgb=24) of the 4D lattice can be +y[V2I+3V(V-0)]-V- IR
distinguished, according to their components along the

fourth dimension, into two groups: a first group of 12 four- _ ﬂ ﬂ £ IX B) (23)
dimensional vectors orthogonal to the fourth direction and a 2 gt \m

second group of six pairs of vectors, with the vectors of each 5

pair differing for the sign of the fourth C_omponefm.g., S [(v-V)p+p(V-v)]=»V2p. (24)
(ck.cy,c,+1) and €4,cy.c,,—1)]. By projecting on the dat

3D lattice, each of the six pairs is projected on the same . | h N2 lid only f
vector and the number of distinct links becomes 18. Thet 'S |mport|ant t&stre(sjstAat:f(ng—( Aft)haret\)/al Omt/ or it
cortesponding partce populatioé, N, which difer in (I eSO TR T Ot the magnetc
the fourth component of the velocity in the FCHC model, are,; P ; I 9
degenerate in the three-dimensional lattice. Thus, in th(faleld appears in the_ continuity and momentum equations,

. . . ' ) Whereas the usual dissipative terms appear in the momentum
pseudo-four-dimensional model, it is necessary to introduc

8nd pressure equations. The term that appears in the momen-
different weightss; for each propagation directian: s;,=1 P q bp

. : ) tum equation introduces an effect of ordeAt<1 with re-
for the link ¢; that at most one particle population can propa-gpect to the destabilizing term present in the continuity equa-

gate along, corresponding to the vectors of the first groupsion and therefore its effect is negligible. The linear stability
and ;=2 for the link ¢; that two particle populations can of the corresponding system of equations can be performed
propagate along, corresponding to the vectors of the secorgk shown in Sec. II, yielding an unphysical instability, whose

group. growth ratey™™ is given, in the absence of a pressure gra-
The macroscopic variables become dient, by
18 18 2 2 2
QAL 7k p;
= N = N num — VT TP
P iZlSI i J izl SiGN;, Y 2 1+Tkipi21 (25

and, in the presence of a pressure gradient, but below the
Note that, if the pseudo-four-dimensional lattice is employed TG threshold, by

to simulate the 2D dynamics, thk field is annihilated and O2At

the thermal pressure can be identified with Sdield. Tak- S — (26)
ing the magnetic field along the axis, theB;; matrix be- 2

comes

Thus the growth rate increases as the square of the magnetic

field strength. As the typical wave numbers of the unphysical

instability are small, the mode energy is weakly dissipated
Bjj :i (CixCjy— CiyCin) (21) py viscosity. Thus St_Jch an unphysical inst_ability may be par-

12 ticularly dangerous in the presence of an inverse energy cas-

cade. In order to annihilate the effect of the unphysical de-

stabilizing termsO(€?), without modifying the macroscopic
and theJXB force acts on thex,y) plane. equation, arad hoccorrective term has been added to the
right-hand side of Eq(10):

2 18

0
~ 52 ;1 S;(CixCix+ Ciy Cjy )N (T, 1). (27)

IV. NUMERICAL STABILITY

In the present section, the numerical stability of the LBE
will be discussed in the 2D limit. Since the parallel dynamicSte expression of the corrective term in three dimensions is
is not affected by the presence of the equilibrium magnetic
field, the numerical stability of the 3D system can be dis- Bg 24
cussed in a similar way. 5z

The numerical stability can be conveniently discussed by =1
considering separately long- and short-wavelength modes. IH

Ty o oo o B oonodc o Gecton the cominuy eqation and on he pressure
Y 9 9 evolution equation. It only produces, in the momentum equa-

macroscopic equations that are obtained by expanding ﬂheon (23), a damping term of the form-0 2AtJ/2, which
LBE to second order i, yielding ! ' '

cancels exactly, in the linear dispersion relation, the unphysi-
cal destabilizing contribution coming from terms ©f€?).
In the case of arbitrary wavelengths, the stability of the
=0, (22) system must be invest!gatgd numer?cally .by Iinearizing_Eq.
(100 around an equilibrium configuration and taking

(Ci'Cj_b'Cib'Cj)Nj(r,t). (28)

is straightforward to verify that the additional term B¢

v+ axB
vV
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without the magnetic field. Note that the viscosity threshold
becomes larger a8, decreases sin(ﬁaﬁocBgl. However,
] the dynamics of electrostatic turbulence is not correctly de-
v scribed in the limitk, p;>1 by the fluid approximation. Thus
k it is convenient to eliminate the terifi ,; in such a wave-
length range. In the present case this is obtained by perform-
ing a smoothing of the velocity fields, used to evaludtg;,
over a radial extent of ordegs, . The dash-dotted line is the
’ result obtained by a smoothing technique, which uses, at
. A each site,N=25 neighboring sites in order to smooth the
02 F " velocity fields. Note that thél ,; term is fully included for
N * k. pi<l.
. ’ In order to reproduce the effect of energy sources present
01 | Tt L, in tokamak plasmas, the macroscopic equilibrium configura-
o tion must not decay over the dissipative time scale. Thus
v sources of momentum and pressure must be included.
0 o —— I In the numerical simulations, in order to investigate the
0.025 005625  0.0875 0.1188 0.15 linear phase of the ITQ r_nodes, the system ha; been per-
B turbed _arognd the equilibrium solution obtained in the drift
0 approximation

0.5

04 |

03 |

Peq=Pos Peq™ peq(x)v Jeq:\]da (29
FIG. 3. Threshold of viscosit{in lattice unit3 vs Bo=Q;At. In
the region below the curves, the lattice Boltzmann algorithm develywhere Jd:(O,PéJBo) is the diamagnetic density current. In
ops numerical instabilities. The continuous line is the viscositythis case, the momentum sour@e lattice unit3 S; must be
threshold in the Navier-Stokes case; the dashed line is the result izken in a such way as to balance the damping of the equi-

the presence of the magnetic field, but neglecting the finite-Larmoriiprium current density, coming from the viscosity term, and
radius effect; the dotted line takes into account the finite-Larmor-the finite-Larmor-radius term

radius term; finally, the dash-dotted line is the result obtained by a
smoothing technique, used in order to eliminate the numerical in- S = V2] Je

o ) =— + V- 11°9 30
stabilities at short wavelengths, coming from the FLR term. The J v ed (30)
LBE has been linearized around a homogeneous equilibrium co

figuration withL =512, py=1, andpg—24. nS|m|larly, the damping effect on the equilibrium pressure

will be canceled by a source of the fortim lattice unit3g

ik- . .
N;(r,t)ce” %" In the present case, the stability will de- Sp=— ¥V ?peq. (31)
pend both orv andB,. The results of the numerical analysis

are shown in Fig. 3, where the region(iy,») space with no In addition to the previous terms, sources that balance the

unstable modes is displayed. The system is numericallp(e?) terms in the macroscopic equations are necessary.

stable above the various curves. Equatin@) has been lin-  Thys an additional source for the equilibrium current density
earized around the following homogeneous equilibrium conmuyst be introduced, of the forin lattice unit$

figuration
S=1B3Jeq (32
Peq=Pos Peq= Po: ‘]eq: 0, VB=0, *
which balances, in the momentum equation, the unphysical

with po=1 and a square lattidex L with L=512. The con-  gamping related to the corrective terf@7). For the same
tinuous line is the result obtained in the Navier-Stokes casgagson a term of the form

(Bo=0). As shown in Ref[17], when viscosity becomes too

smgll 1<<0.013, modes Wlth wavelength_com.parabllt.a.to the S,= 3V (JegX Boh+S)) (33
lattice constant are excited and numerical instabilities de-

velop. The dashed line is the numerical result obtained in thenust be introduced in the continuity equation. The addition
presence of the magnetic field, but neglecting the finite Larof the source terms in the macroscopic equations yields the

mor radius effect(Il,z=0). For By=<0.1, the viscosity following equations for the populations:
threshold is the same as in tl=0 case. Indeed, the nu-

merical instabilities driven by the magnetic field, at long 18
wavelengths, have been annihilated by the corrective terniN;(r+c¢ ,t+1)=Ni(r,t)+z AIN;(r,t) = NfYr,b)]
Eq. (27). As B, approaches unity, the expression E27), =1

obtained in the limitBy<1, is not appropriate to eliminate 18 B2

numerical instabilities and the viscosity threshold increases. +BOZ BijN;(r,t)— 0

When the finite Larmor radius terfl ,; is taken into ac- i=1 24

count (dotted ling, numerical instabilities at short wave- 18

lengths (k, p;>1) appear and the viscosity threshold be- XE S/ (CixCix 4 Civ Civ )N (T, 1) + 3G - (S
comes about one order of magnitude larger than in the case o TR Ry RS Az A
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L L L L L L FIG. 4. Equilibrium macroscopic variables vs
0 500 1000 1500 2000 0 500 1000 1500 2000 t (in lattice unitg, at the point(x=_L/4, y=L/4),
! ' obtained by a LBE simulation with.=512,
Peq=Po Sin(4mx/L), po=1, Bu=0.1, py=24, and
v=0.02. The macroscopic variables are the pres-
o O surep (@), thex,y components of the momentum
025 densityJ,,J,, respectively(bc), and the density
fluctuationp=p—pg (d).
-0.05 )U

-0.26

Ty
10° [p (v-po)

-0.27

0 500 1000 1500 2000 0 500 1000 1500 2000

+SM)+ £¢,S,+ %S, - (34 =3 k[p1sinfkxtky)+p, coskxtky)] with

, . kyy=2mn, /L the wave vectors of the perturbation. In Fig.
i The f!“.”?ef'c.a' stability p.f the above system has been Verl5 the linear and turbulent phases are shown for an equilib-
fied by initializing an equilibrium configuration with a ho- rium magnetic field WithB-=0.1 ande.=0.1. The macro-
mogeneous equmbrlum magnetic field. At the starting timescopic variables are plotteod aé functians df ihe time=at./
the MICTOSCOpIC populations have t()eeen set to the thermodyA: y=L/2 for L=512 and for a starting density perturbation
namic equilibrium valued\i(r.0)=N{p.J,p) correspond- characterized by,=0 andn,=3,4,5,6. The numerical simu-
ing to the macroscopic configuration, given by E29). As . x y “Trom : :
the system evolves in time, the macroscopic varigbles remailr?ﬂgnogas_r?]ielri]n%ear:og;rrgﬁgpfa_t énarlgjtt:&; au\gﬁ’goig{a\iﬂge
constantsthe numerical fluctuations are @(10 %) fora Y~ Y4 . . . X
square lattice X L with L=512], as expected for a configu- from the local dispersion relatiofy;,,) is plotted versus the

ration that is linearly stablésinceVB=0). The results of the spatialx coordinate in Fig. 6 fot. =512, n,=0, andn,=3.
simulation, performed with a pressure profile The numerically determined growth rate is also shdie

Pe=Po SiN(4mx/L) and the parameter values=512, p,=1, point atx=L/4). An estimate of the global eigenvalue can be
Boqzo.l andp,=24 are shown in Fig. 4. The macroscopic obtained by observing that the eigenfunction tends to be lo-
variablesp, J,., J, , andp=p—p,, in lattice units, are plotted calized during the linear phase arouxe L/4 as shown in

versus time at the lattice point=L/4, y=L/4. Thus the Fig. 7. Thus the global growth rate is expected to be close to
numerical algorithm is indeed stable., the linear growth rate evaluatedjatL/4, as indeed shown

in Fig. 6.

The evolution of the pressure profile, in lattice units, at
differenty values is shown in Fig. 8. Figure$e8, 8(b), and

After having shown that the LBE algorithm is numerically 8(c) represent the pressure profile, respectivelyyat./4,
stable, in this section the linear and the nonlinear evolutiory=L/2, andy=3L/4 for different times: at the starting time
are considered. The comparison of the numerical results witfsolid ling), during the linear phasglashed ling and during
the analytical results of Sec. Il will provide a test for the the turbulent phasédotted ling. The pressure profile does
accuracy of the method. not show the local flattening, observed in Réf. 8], since,

The linear phase of the instability has been studied byor the present simulation, the typical diffusion time, associ-
considering a nonuniform magnetic field of the form ated with the turbulent heat flux, is much longer than the
Bo=B[1+ €5 cos(2mx/L)], with the constantg being pro-  time of the simulation.
portional to the magnetic field inhomogeneity. The micro- The evolution of the turbulent heat flux normalized to
scopic populations have been perturbed around the equiliRTEYAt(Ar)2, g,=L 'fdy v,p;, at x=L/4 is shown in
rium values in order to produce a density fluctuatipn Fig. 9, where the ratio betweem, and the quasilinear esti-

V. NUMERICAL RESULTS
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02

p®
Ix®

02 |

FIG. 5. Temporal behavior of the macro-
L L scopic variables, in lattice units, at the poimt
6000 0 2000 4000 6000 —| /4, y=L/4), in the presence of the ITG mode.
A nonuniform magnetic _ field
Bp=Bg[1+e€g cos(2mx/L)]  with  By=0.1,
eg=0.1,L=512, »=0.02, and a starting density
o O perturbation P=3 k[P sin(kx+kyy)
o L +p, coskx+ky)] with wave numbersn,=0,
ny=3,4,5,6 have been considered. The figure
shows the same quantities as in Fig. 4.

o

-1.0 |

0 2000 4000 6000 0 2000 4000 6000

mate is plotted vs time. The quasilinear estimate of the hedtig. 9, the heat flux increases during the linear phase ap-
flux is derived on the basis of the usual mixing-length argu-proaching the quasilinear value a£2000. In the turbulent
ment by assuming a diffusive heat flqg"”zxaaneq, with  phase, the heat flux decreases and reaches at saturation a
Xan™ y/k)%, v being the linear growth rate arig being an  value that is 30% smaller. Such a reduction has been ob-
estimate of the average wave vector of the perturbation. liserved also in previous fluid simulatiof] and gyrokinetic

the present cas&,=127/L has been assumed. As shown in particle simulationg9]. In Ref. [8], the phenomenon has
been explained in terms of the formation of large-scale co-

herent structures. These structures can be interpreted as
solitary-vortex solutions of the inviscid equations and are

25x 107
Y lin
0.10
18x10° |
005 |
12x10° F
o 0 B
<
=
48x10° | &
005 |
2.0x 107 L L I 010
0 128 256 384 512 e
X
i 1
0 200 400

FIG. 6. Linear growth rate vs the coordinate in lattice units
(solid line) for a starting density perturbation with wave numbers
n,=0, n,=3. The corresponding value of the numerical growth rate  FIG. 7. Linear mode structure at the end of the linear phase. The
is also shown(point atx=128). variables plotted are expressed in lattice units.
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p(x)

0.5

-0.5

-0.5

FIG. 8. Evolution of the pressure profile at differgnvalues(in lattice unitg: (a) y=L/4, (b) y=L/2, and(c) y=3L/4, withL=512. The
solid line is the pressure profile at the starting time, the dashed line is the pressure during the line&r=f@@®, and the dotted line is
the pressure profile during the turbulent ph&se6000.

characterized by a turbulent heat flux that exactly vanishes.
Large-scale structures are also observed in the present

simulations as shown in Fig. 10, where the contour plots of

pressure and density are showntat6000. From these re-

sults we can conclude that the LBE algorithm correctly re-

produces the turbulent dynamics. 1.00

VI. CONCLUSION

0.75
A lattice Boltzmann algorithm, which simulates the Li
plasma turbulence driven by the ion temperature gradient 3’5
and by the curvature of the equilibrium magnetic field, has & 0.50

been developed. The algorithm reproduces the ion continu-

ity, momentum, and pressure equations in three dimensions,

with the electrons being described by the adiabatic response. 0.25

The magnetic field term produces long-wavelength numeri-

cal instabilities, which can be suppressed by inserting a cor-

rective term that enters the momentum equation at the sec-

ond order inAt and so does not alter the form of the fluid 0 2000 4000 6000

equations in the continuous limikt—0. Short-wavelength t

instabilities, coming from the finite-Larmor-radius term, are

suppressed by performing a smoothing of the velocity fields,

over a radial extent of ordgs; . Then, the finite value of the FIG. 9. Ratio between the heat flax=L"1fdy v,p; and the

viscosity can be chosen of the same order of the value that i§uasilinear estimate vs timén lattice unit$ at x=L/4, with

needed to obtain numerically stable Navier-Stokes simular =512. The quasilinear estimaqe"”=)(aaneq, With yan=~ /K2,

tions. v being the linear growth rate, is evaluated for an equilibrium pres-
The 2D limit has been analyzed. In the linear phase theure profilepe,=po sin(4wx/L), with p,=1, and an average wave

growth rate obtained from the lattice Boltzmann simulationsvector of the perturbatiok,=127/L.
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FIG. 10. Contour plots of thé) pressure and
(b) electrostatic potential in lattice units at
t=6000.

a) b)

is in agreement with the growth rate obtained from the lineatime is about 71 h on an IBM RISC/6000 Model No. 370 and
theory. In the nonlinear phase the relaxation towards a mathe necessary memory region is about 23 Mbytes.

ginally stable profile is observed. A complete discussion of
the dynamics of the turbulent phase is planned to be pre- ACKNOWLEDGMENT

sented in a future paper. For a LBE simulation followed up We thank F. Massaioli for having supplied us with the
to 6000 time units on a lattice 5512, the typical CPU original LBE code that simulates the Navier-Stokes equation.
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