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A lattice Boltzmann algorithm to study the three-dimensional electrostatic-turbulence dynamics in thermo-
nuclear plasmas is derived. The ion continuity, momentum, and pressure equations are reproduced with the
electrons being described by the adiabatic response. The numerical stability is discussed. Applications to the
study of two-dimensional turbulence are presented.@S1063-651X~96!00709-X#
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I. INTRODUCTION

The particle and heat transport across magnetic surfaces
in controlled thermonuclear devices is due to turbulent pro-
cesses associated with the presence of small-scale instabili-
ties, in particular those belonging to the drift branch and
destabilized by the free-energy sources related to the pres-
ence of density and temperature gradients@1#. Among such
instabilities a particular relevance is attributed to the ion tem-
perature gradient~ITG! mode, which is driven unstable by
the combined effect of the equilibrium-magnetic-field inho-
mogeneity and the ion temperature gradient@2–4#.

The behavior of the mode in the nonlinear regime has
been investigated within the framework of conventional fluid
simulations@5–8#, gyrokinetic particle simulations@9–11#,
or gyrofluid simulations@12#. The aim of these analyses has
been primarily to determine the magnitude of the turbulent
heat flux and its scaling with the plasma parameters both in
the case of fixed ion equilibrium temperature profileTi

eq and
in the case in whichTi

eq is free to evolve. Local flattening of
the temperature profile was, e.g., observed in Refs.@5,8# as a
result of the turbulent heat flux bringing the mode close to
marginal stability. Even though the quasilinear estimate of-
ten predicts the correct order of magnitude of the turbulent
heat flux, a significant departure from such an estimate has
been observed in many cases. For example, in Ref.@8#, the
formation of large-scale coherent structures was observed,
leading to the reduction of the turbulent transport.

Most of the above simulations are two dimensional~2D!
and refer to model 1D equilibria such as a plasma slab or a
cylinder with circular cross section, where the effect of linear
toroidal coupling among different poloidal harmonics is ab-
sent. In such a case turbulence is almost isotropic in the
plane perpendicular to the equilibrium magnetic field. More
recently, attention has been focused on the problem of the
formation and evolution of strongly anisotropic structures
that have been observed in gyrokinetic particle simulations
@10#. Anisotropic turbulence has also been measured@13# on
the Tokamak Fusion Test Reactor tokamak@14#. In 2D equi-

libria, such as those characterizing tokamak plasmas, it can
indeed be shown, on the basis of linear theory@15,16#, that
strongly anisotropic vortices may be generated, with a radial
extension of the order of the characteristic length of the equi-
librium ion temperature profileLT[2(d ln Ti

eq/dr)21 and
much larger than the extension in the poloidal direction,
which, for the most unstable modes, is of the order of a few
ion Larmor radiir i[v thi /V i , with v thi being the ion thermal
velocity andVi the ion Larmor frequency. The presence of
such structures may have a strong impact on the understand-
ing of turbulent transport. The global energy confinement
time is indeed expected to increase more weakly with the
device dimension than in the case of short radial correlation
length turbulence. In order to describe in a realistic way such
a situation, 3D simulations are required that should resolve
radial wavelengths ranging from the macroscopic device di-
mension ('LT) to the shortest wavelengths at which dissi-
pation takes place, which, for realistic plasma parameters,
will be a fraction of the ion Larmor radius, with the wave-
lengths of the linearly unstable modes being of the order of a
few Larmor radii.

In order to perform high-resolution 3D simulations, a par-
ticularly promising method is that based on the lattice Bolt-
zmann equation~LBE! @17,18#. The macroscopic dynamics,
described by a set of fluid equations, is simulated starting
from the microscopic description of the system. To this aim,
a population of particles moving on a discrete lattice is con-
sidered. Particles that arrive at the same point undergo a
collision, with the collision operator chosen in such a way as
to conserve the particle number and the momentum. The key
issue in the derivation of the LBE algorithm is the choice of
the form of the equilibrium distribution function. It is written
as a combination of the low-order fluid moments~density,
momentum, and pressure! such that the fluid equations on
the macroscopic scales~i.e., on a space scale larger than the
lattice spacing and a time scale longer than the time between
two collisions! are exactly recovered. It is important to note
that the microscopic dynamics is, in principle, not related to
the true microscopic particle dynamics and, in this respect,
the present approach differs from that employed in gyroki-
netic simulations@9–11#, which solve the exact equation of
motion of the particles. However, in many situations, the
turbulence dynamics is adequately described by the macro-
scopic plasma behavior. This is, e.g., the case of the ITG
mode well above the linear threshold for instability: in such
a case the details of mode-particle resonance, which are im-
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portant in determining the threshold, play a minor role. Un-
der such a condition it may be convenient to employ the LBE
approach, which has the advantage of an easy implementa-
tion on massively parallel computers. The algorithm has
been indeed successfully used for simulations of the
Rayleigh-Bénard convection@19# on the APE100 computer
@20#, as well as to a plasma-physics model, such as the mag-
netohydrodynamics model@21#.

The primary aim of the present paper is to show that a
LBE algorithm can be derived for the study of 3D plasma
dynamics in the electrostatic limit and within the fluid ap-
proximation. The numerical stability of the algorithm is in-
vestigated showing that, for an appropriate choice of the pa-
rameters, the algorithm is numerically stable. Preliminary
applications to the study of 2D turbulence will be also pre-
sented.

The structure of the paper is the following. In Sec. II the
physical model describing the ITG mode is briefly reviewed
and the linear stability is discussed. In Sec. III the lattice
Boltzmann method is introduced and the three-dimensional
algorithm for the magnetized plasmas is derived. The nu-
merical stability is discussed in Sec. IV. The numerical re-
sults are presented in Sec. V and compared with the analyti-
cal results of the linear stability analysis. Concluding
remarks are given in Sec. VI.

II. TWO-FLUID PLASMA MODEL

In this section the fluid equations describing the ITG
mode are briefly described. We refer to Refs.@4,8# for a
complete discussion of the model. The basic equations are
the continuity, momentum, and pressure equations for the
ions,

dni
dt

1ni“•vi50, ~1!

mini
dvi
dt

52“pi1eni~2“f1vi3B!2“•Pi , ~2!

dpi
dt

5x i¹
2pi . ~3!

Here the subscripti refers to the ions;d/dt5]/]t1vi•“;
mi , ni , andvi are, respectively, the mass, density, and mean
velocity;f is the electrostatic potential,B is the equilibrium
magnetic field, andxi the classical thermal conductivity. The
expression for the ion stress tensor is given by@22#

Pi52
pi
V i

@2b~b•“ !~vi'3b!22~b3“ !v i ib2~“3vi !b

1b~“3vi !#2
pi
2V i

@“'~vi'3b!1~b3“'!vi'#

2
3

10
n i i

pi
V i

2 “'vi' , ~4!

whereb5B/B, “ is the gradient operator, the suffix' ~i!
indicates the component perpendicular~parallel! to the equi-
librium magnetic field, andni i is the ion-ion collision fre-

quency. Note that the first six terms on the right-hand side
correspond to the finite-Larmor-radius effect~PFLR! and
should be retained since they cancel part of the contribution
associated with the inertia term@23#, while the last term cor-
responds to the effect of perpendicular viscosity dissipation.
Equation~3! differs from the pressure equation used in Ref.
@8# by small corrections associated with the compressibility
term that do not alter the instability dynamics in both the
linear and the nonlinear phase.

The electrostatic potentialf is determined by the Poisson
equation, which, in the limitk'lD!1, with k' being the
perpendicular wave vector of the perturbed electrostatic po-
tential andlD the Debye length, reduces to the quasineutral-
ity equation

ni5ne . ~5!

The electron density is assumed to be described by the adia-
batic response

ne5ne
eqS 11

ef

Te
eqD , ~6!

whereTc
eq andne

eq are the equilibrium electron temperature
and density, respectively. This assumption is correct as long
as the trapped electron response is small.

Equations~1!–~6! are the usual two-fluid plasma equa-
tions employed to analyze the dynamics of ITG modes in
three dimensions. In the present paper we will discuss the
numerical implementation of the algorithm in the 2D limit.
Such a case has been studied in Ref.@8# and it is worthwhile
recalling the main results of the linear stability analysis.

In the 2D limit the parallel ion dynamics is neglected by
choosing a perturbation withb•“50. Thus, from Eq.~2!,
v i i50 and the fluid motion occurs in a plane perpendicular to
the equilibrium magnetic field.

As shown in Refs.@4,8#, in the low-frequency limit, Eqs.
~1! and ~3! reduce to

] tf̂22eT]yf̂22
eT
t

]yp̂2] t¹
2f̂,

2F f̂1
p̂

t
,¹2f̂ G2

1

t
@]xp̂,]xf̂#2

1

t
@]yp̂,]yf̂#

52
~D12D2!

t
¹4p̂2D1¹

4f̂, ~7!

] t p̂1@f̂,p̂#5D2¹
2p̂, ~8!

where f̂5(ef/Te
eq)(LT /rs), p̂5(pi /pi

eq)(LT /rs), LT[
2(d ln Ti

eq/dr)21, andrs[r it
1/2 with t[Te

eq/Ti
eq. In order

to reproduce the typical situation of the toroidal geometry
within the framework of a two-dimensional case, an equilib-
rium magnetic fieldB5Bb with a constant directionb and a
modulus B5B(x), such that“3~B/B2!522/(BR) ŷ, has
been considered, withR being the major radius of the torus.
In Eqs.~7! and ~8! the time and space variables are normal-
ized respectively to LT/Cs and to rs , eT[LT/R,
[ f ,g][]xf ]yg2]yf ]xg, D153n i i LT/10Cs ,
D25x iLT/Csr s

2, andCs[v thit
1/2.
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In Eq. ~7! the first term comes from the temporal partial
derivative of the perturbed ion density. The next two terms
are the contributions to“•nivi coming from theE3B drift
and the diamagnetic drift, respectively, and they are associ-
ated with the inhomogeneity of the equilibrium magnetic
field. The terms including theD1 coefficient are related to
the viscosity, while the remaining contributions are related to
the polarization drift. Upon linearizing and Fourier trans-
forming ~] t52 iv, “5ik'! Eqs. ~7! and ~8!, the following
dispersion relation is obtained:

~11k'
2 !v21H S k'

2

t
12eTD ky1 i @D1k'

41D2k'
2 ~11k'

2 !#J v

1F2eT
t

ky
22D1D2k'

61 ikyk'
2 S 2eTD21D1

k'
2

t D G50.

~9!

The growth rateg obtained by solving Eq.~9! is shown in
Fig. 1 vs (kxrs ,kyrs) for t512, eT50.025, and two values
of the classical dissipationD15D2510.023@Fig. 1~a!# and
D15D250.046@Fig. 1~b!#. It is important to stress that clas-
sical dissipation weakly affects the most unstable long-
wavelength modes. Equation~9! yields also a threshold ineT
for the mode destabilization, given, fork'50, by 0<eT<2/t.

III. LATTICE BOLTZMANN EQUATION
FOR MAGNETIZED PLASMAS

The lattice Boltzmann equation@17# is a numerical tech-
nique that has been used to integrate the Navier-Stokes equa-
tion @18,19#. The macroscopic dynamics is simulated by a
fictitious microscopic system of particles moving on a dis-
creteD-dimensional lattice, as schematically shown in Fig. 2
for the caseD52. The elementary process corresponds to the
particle propagation between each site and one of theb
neighboring sites~which depends on the orientation of the
particle velocity!, and the collision between particles that
arrive at the same time in a given site. The collision operator
must satisfy the conditions of particle-number and momen-
tum conservation. Under the effect of collisions, the system

relaxes toward a local equilibrium distribution function. The
choice of the equilibrium distribution function is the crucial
point in the derivation of the LBE algorithm. It is written as
a combination of the low-order fluid moments chosen in such
a way that the macroscopic dynamics, described by the fluid
equations, is correctly reproduced. The lattice dimensionD
is chosen in order to ensure the isotropy of the macroscopic
system simulated by the LBE.

In the case of 3D simulations, considered in the present
section, a face-centered-hypercubic~FCHC! four-
dimensional lattice must be used. Each quantity is assumed
to depend only on the first three coordinates, associated with
the three spatial variables, and to be constant along the fourth
~unphysical! direction. On each site,b524 populations of
particles$Ni , i51,2, . . . ,b% are defined with velocities$cia ,
i51,2, . . . ,b: a51, . . . ,D%. In the following, the Greek
subscripts represent the components of a four-dimensional
vector, while the usual notationv represents a three-
dimensional vector. As it will be shown below, in order to
reproduce the two-fluid model theNi populations must

FIG. 1. Linear growth rate normalized to the ratioLT/Cs versus (kxrs ,kyrs), whereLT52~d ln Ti /dr!
21, Cs5v thit

1/2, t5Te
eq/Ti

eq, and
rs5r it

1/2. kx andky are the components of the wave vector, perpendicular to the equilibrium magnetic field. Also shown are the result of
Eq. ~9! for t512, eT50.025, and two different values of the classical dissipation:~a! D15D250.023, and~b! D15D250.046.

FIG. 2. Discrete two-dimensional lattice. On each site,b56
populations of particles$Ni , i51, . . . ,6% are defined with velocities
$ci , i51, . . . ,6%, joining the site with the six neighboring sites.
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evolve in time according to propagation and collision rules,
which can be written as

Ni~r1Drci ,t1Dt !5Ni~r ,t !1ncDt(
j51

b

Ai j @Nj~r ,t !

2Nj
eq~r ,t !#1B0(

j51

b

Bi jNj~r ,t !,

~10!

r being the coordinate of the site,Dr uci u andDt the micro-
scopic steps, physically related to the mean free path and to
the time between two collisions, respectively, withDr
5(2Te

eq/mi)
1/2Dt, nc being the collision frequency,Ai j the

collision matrix,Nj
eq the value of the populationNj at the

local thermodynamic equilibrium, andB05V iDt with
V i5V i(x)5eB(x)/mi .

The collision matrixAi j must satisfy the mass and mo-
mentum conservation laws and appropriate symmetries@17#
and has the same expression previously employed for simu-
lating the Navier-Stokes equation. It is possible to show@24#
that Ai j can be written in terms of just one parameterl,
connected to the kinematic viscosityn by

n52
1

3l
2
1

6
. ~11!

The matrixAi j is evaluated in Ref.@24#.
The matrixBi j , which accounts for the Lorentz force, has

the following explicit expression in terms of the equilibrium
magnetic field vectorb:

Bi j5
1
12b•ci3cj . ~12!

Note that in the numerical evolution of the LBE the temporal
variable will be normalized toDt and the spatial variable to
Dr ~lattice units!, but, in order to discuss the fluid-equations
derivation, it is convenient to maintain explicit the depen-
dence onDr andDt.

In order to explicitly show that Eq.~10! correctly repro-
duces the two-fluid model, it is necessary to derive the asso-
ciated macroscopic equations by the usual multiscale expan-
sion of the LBE@17# similar to the well known Chapman-
Enskog @25# expansion of the kinetic equation. It is
important to note that in the LBE formalism, the collision
time ~n c

21! and the discrete time step (Dt) are assumed to be
equal~i.e., ncDt51!. Thus the continuous limit~Dt→0! and
the multiscale expansion, made in order to derive the mac-
roscopic equations, are taken simultaneously. The expansion
parameter~e! is the ratio between the microscopic time scale
n c

21 and the time scale of the macroscopic variables. Space
and time derivatives are ordered in terms ofe as

¹5O~e!Dr21, ] t5O~e!Dt21. ~13!

Furthermore, we assumeV iDt5O(e). Formally, the effect
of viscosity enters atO~e2! for perturbations characterized by
the typical length scalee21Dr . Nevertheless, for perturba-
tions on smaller scalee21/2Dr , the viscosity term enters at
O~e! and, properly, provides an energy sink for the high
wave numbers.

Generally, the local equilibrium population is a function
of the macroscopic variables. The mass densityr, the mo-
mentum densityJ, and the thermal pressurep can be ex-
pressed, in lattice units, in terms of linear combinations of
the microscopic variablesNi ~the normalizationmi51 is
considered in the following for the sake of simplicity!:

r5(
i51

24

Ni , J5(
i51

24

ciNi , p[J45(
i51

24

ci4Ni .

In order to reproduce the fluid equations, the expression of
Ni
eq must be chosen as

Ni
eq5 1

24$r12Jacia13@QiabJavb2Qi44Jgvg#212pQi44%

1 1
8QiabP̂ab , ~14!

where the repeated indices are summed,va5Ja/r,
Qiab5ciacib2 1

2dab , andP̂ is thePFLR tensor expressed in
lattice units.

In order to obtain the expression of the physical variables,
the following scale transformation must be performed:

r→r
mi

~Dr !3
, v→v

Dr

Dt
, ~15!

J→J
mi

Dt~Dr !2
, p→2p

Te
eq

~Dr !3
, ~16!

n→n
~Dr !2

Dt
, P̂→P̂

mi

Dr ~Dt !2
. ~17!

With such a choice, the physical variables satisfy the equa-
tions

]r

]t
1“•J50, ~18!

]J

]t
1@~v•“ !J1J~“•v!#52

Te
eq

mi
“r2“p1

e

mi
J3B

1n@¹2J1 1
2“~“•J!#2“

•PFLR , ~19!

]p

]t
1@~v•“ !p1p~“•v!#5n¹2p. ~20!

Equations~18!–~20! coincide with Eqs.~1!–~3!, except for
the compressibility term in the pressure equation. The effect
of such a term is negligible as long ast@1.

Lattice Boltzmann equation in the 2D limit

The lattice Boltzmann algorithm described so far is able
to simulate the 3D ITG mode dynamics. In the present paper
we will consider the application to the 2D limit. To this aim,
it is convenient to consider the reduction of the lattice Bolt-
zmann algorithm to the two-dimensional dynamics.

In order to reproduce the macroscopic equations~18!–
~20! in two dimensions for the mass density, the momentum
density, and the pressure field, it is convenient to consider
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the three-dimensional lattice obtained by the projection of
the FCHC lattice on the hyperplane (x,y,z) ~the so-called
pseudo-four-dimensional model!.

The original 24 vectors~b524! of the 4D lattice can be
distinguished, according to their components along the
fourth dimension, into two groups: a first group of 12 four-
dimensional vectors orthogonal to the fourth direction and a
second group of six pairs of vectors, with the vectors of each
pair differing for the sign of the fourth component@e.g.,
(cx ,cy ,cz11) and (cx ,cy ,cz ,21)#. By projecting on the
3D lattice, each of the six pairs is projected on the same
vector and the number of distinct links becomes 18. The
corresponding particle populationsNi ,Nj , which differ in
the fourth component of the velocity in the FCHC model, are
degenerate in the three-dimensional lattice. Thus, in the
pseudo-four-dimensional model, it is necessary to introduce
different weightssi for each propagation directionci : si51
for the link ci that at most one particle population can propa-
gate along, corresponding to the vectors of the first group,
and si52 for the link ci that two particle populations can
propagate along, corresponding to the vectors of the second
group.

The macroscopic variables become

r5(
i51

18

siNi , J5(
i51

18

siciNi ,

Note that, if the pseudo-four-dimensional lattice is employed
to simulate the 2D dynamics, theJ4 field is annihilated and
the thermal pressure can be identified with theJ3 field. Tak-
ing the magnetic field along thez axis, theBi j matrix be-
comes

Bi j5
sj
12

~cixcjy2ciycjx! ~21!

and theJ3B force acts on the (x,y) plane.

IV. NUMERICAL STABILITY

In the present section, the numerical stability of the LBE
will be discussed in the 2D limit. Since the parallel dynamics
is not affected by the presence of the equilibrium magnetic
field, the numerical stability of the 3D system can be dis-
cussed in a similar way.

The numerical stability can be conveniently discussed by
considering separately long- and short-wavelength modes. In
order to identify the terms responsible for the numerical in-
stability at long wavelength it is convenient to consider the
macroscopic equations that are obtained by expanding the
LBE to second order ine, yielding

]r

]t
1“•J1

Dt

2
“•S emi

J3BD50, ~22!

]J

]t
1@~v•“ !J1J~“•v!#52

Te
eq

mi
“r2“p1

e

mi
J3B

1n@¹2J1 1
2“~“•J!#2“•PFLR

2
Dt

2

]

]t S emi
J3BD , ~23!

]p

]t
1@~v•“ !p1p~“•v!#5n¹2p. ~24!

It is important to stress that Eqs.~22!–~24! are valid only for
long-wavelength modes~kDr!1!. From the above system it
is possible to see that a term associated with the magnetic
field appears in the continuity and momentum equations,
whereas the usual dissipative terms appear in the momentum
and pressure equations. The term that appears in the momen-
tum equation introduces an effect of ordervDt!1 with re-
spect to the destabilizing term present in the continuity equa-
tion and therefore its effect is negligible. The linear stability
of the corresponding system of equations can be performed
as shown in Sec. II, yielding an unphysical instability, whose
growth rategnum is given, in the absence of a pressure gra-
dient, by

gnum'
V i

2Dt

2

tk'
2r i

2

11tk'
2r i

2 , ~25!

and, in the presence of a pressure gradient, but below the
ITG threshold, by

gnum'
V i

2Dt

2
. ~26!

Thus the growth rate increases as the square of the magnetic
field strength. As the typical wave numbers of the unphysical
instability are small, the mode energy is weakly dissipated
by viscosity. Thus such an unphysical instability may be par-
ticularly dangerous in the presence of an inverse energy cas-
cade. In order to annihilate the effect of the unphysical de-
stabilizing termsO~e2!, without modifying the macroscopic
equation, anad hoccorrective term has been added to the
right-hand side of Eq.~10!:

2
B0
2

24 (
j51

18

sj~cixcjx1ciycjy!Nj~r ,t !. ~27!

The expression of the corrective term in three dimensions is

2
B0
2

24 (
j51

24

~ci•cj2b•cib•cj !Nj~r ,t !. ~28!

It is straightforward to verify that the additional term inB0
2

has no effect on the continuity equation and on the pressure
evolution equation. It only produces, in the momentum equa-
tion ~23!, a damping term of the form2V i

2DtJ/2, which
cancels exactly, in the linear dispersion relation, the unphysi-
cal destabilizing contribution coming from terms ofO~e2!.

In the case of arbitrary wavelengths, the stability of the
system must be investigated numerically by linearizing Eq.
~10! around an equilibrium configuration and taking
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Nj (r ,t)}e
gt1 ik•r. In the present case, the stability will de-

pend both onn andB0. The results of the numerical analysis
are shown in Fig. 3, where the region in~B0,n! space with no
unstable modes is displayed. The system is numerically
stable above the various curves. Equation~10! has been lin-
earized around the following homogeneous equilibrium con-
figuration

req5r0 , peq5p0 , Jeq50, “B50,

with p051 and a square latticeL3L with L5512. The con-
tinuous line is the result obtained in the Navier-Stokes case
~B050!. As shown in Ref.@17#, when viscosity becomes too
small n,0.013, modes with wavelength comparable to the
lattice constant are excited and numerical instabilities de-
velop. The dashed line is the numerical result obtained in the
presence of the magnetic field, but neglecting the finite Lar-
mor radius effect ~P̂ab50!. For B0<0.1, the viscosity
threshold is the same as in theB050 case. Indeed, the nu-
merical instabilities driven by the magnetic field, at long
wavelengths, have been annihilated by the corrective term
Eq. ~27!. As B0 approaches unity, the expression Eq.~27!,
obtained in the limitB0!1, is not appropriate to eliminate
numerical instabilities and the viscosity threshold increases.
When the finite Larmor radius termP̂ab is taken into ac-
count ~dotted line!, numerical instabilities at short wave-
lengths ~k'r i.1! appear and the viscosity threshold be-
comes about one order of magnitude larger than in the case

without the magnetic field. Note that the viscosity threshold
becomes larger asB0 decreases sinceP̂ab}B 0

21. However,
the dynamics of electrostatic turbulence is not correctly de-
scribed in the limitk'r i.1 by the fluid approximation. Thus
it is convenient to eliminate the termP̂ab in such a wave-
length range. In the present case this is obtained by perform-
ing a smoothing of the velocity fields, used to evaluateP̂ab ,
over a radial extent of orderri . The dash-dotted line is the
result obtained by a smoothing technique, which uses, at
each site,N525 neighboring sites in order to smooth the
velocity fields. Note that theP̂ab term is fully included for
k'r i,1.

In order to reproduce the effect of energy sources present
in tokamak plasmas, the macroscopic equilibrium configura-
tion must not decay over the dissipative time scale. Thus
sources of momentum and pressure must be included.

In the numerical simulations, in order to investigate the
linear phase of the ITG modes, the system has been per-
turbed around the equilibrium solution obtained in the drift
approximation

req5r0 , peq5peq~x!, Jeq5Jd , ~29!

where Jd5(0,peq8 /B0) is the diamagnetic density current. In
this case, the momentum source~in lattice units! SJ must be
taken in a such way as to balance the damping of the equi-
librium current density, coming from the viscosity term, and
the finite-Larmor-radius term

SJ52n¹2Jeq1“•P̂eq. ~30!

Similarly, the damping effect on the equilibrium pressure
will be canceled by a source of the form~in lattice units!

Sp52n¹2peq. ~31!

In addition to the previous terms, sources that balance the
O~e2! terms in the macroscopic equations are necessary.
Thus an additional source for the equilibrium current density
must be introduced, of the form~in lattice units!

SJ
~1!5 1

2B0
2Jeq, ~32!

which balances, in the momentum equation, the unphysical
damping related to the corrective term~27!. For the same
reason, a term of the form

Sr5 1
2“•~Jeq3B0b1SJ! ~33!

must be introduced in the continuity equation. The addition
of the source terms in the macroscopic equations yields the
following equations for the populations:

Ni~r1ci ,t11!5Ni~r ,t !1(
j51

18

Ai j @Nj~r ,t !2Nj
eq~r ,t !#

1B0(
j51

18

Bi jNj~r ,t !2
B0
2

24

3(
j51

18

sj~cixcjx1ciycjy!Nj~r ,t !1 1
12ci•~SJ

FIG. 3. Threshold of viscosity~in lattice units! vsB05V iDt. In
the region below the curves, the lattice Boltzmann algorithm devel-
ops numerical instabilities. The continuous line is the viscosity
threshold in the Navier-Stokes case; the dashed line is the result in
the presence of the magnetic field, but neglecting the finite-Larmor-
radius effect; the dotted line takes into account the finite-Larmor-
radius term; finally, the dash-dotted line is the result obtained by a
smoothing technique, used in order to eliminate the numerical in-
stabilities at short wavelengths, coming from the FLR term. The
LBE has been linearized around a homogeneous equilibrium con-
figuration withL5512,p051, andr0524.
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1SJ
~1!!1 1

12cizSp1
1
24Sr . ~34!

The numerical stability of the above system has been veri-
fied by initializing an equilibrium configuration with a ho-
mogeneous equilibrium magnetic field. At the starting time
the microscopic populations have been set to the thermody-
namic equilibrium valuesNi(r ,0)5Ni

eq(r,J,p) correspond-
ing to the macroscopic configuration, given by Eq.~29!. As
the system evolves in time, the macroscopic variables remain
constants@the numerical fluctuations are ofO~1022! for a
square latticeL3L with L5512#, as expected for a configu-
ration that is linearly stable~since“B50!. The results of the
simulation, performed with a pressure profile
peq5p0 sin(4px/L) and the parameter valuesL5512,p051,
B050.1, andr0524 are shown in Fig. 4. The macroscopic
variablesp, Jx , Jy , andr̃[r2r0, in lattice units, are plotted
versus time at the lattice pointx5L/4, y5L/4. Thus the
numerical algorithm is indeed stable.

V. NUMERICAL RESULTS

After having shown that the LBE algorithm is numerically
stable, in this section the linear and the nonlinear evolution
are considered. The comparison of the numerical results with
the analytical results of Sec. II will provide a test for the
accuracy of the method.

The linear phase of the instability has been studied by
considering a nonuniform magnetic field of the form
B05B̂0@11eB cos(2px/L)#, with the constanteB being pro-
portional to the magnetic field inhomogeneity. The micro-
scopic populations have been perturbed around the equilib-
rium values in order to produce a density fluctuationr̃

5(kx ,ky
@r1 sin(kxx1kyy)1r2 cos(kxx1kyy)# with

kx,y52pnx,y/L the wave vectors of the perturbation. In Fig.
5 the linear and turbulent phases are shown for an equilib-
rium magnetic field withB̂050.1 andeB50.1. The macro-
scopic variables are plotted as functions of the time atx5L/
4, y5L/2 for L5512 and for a starting density perturbation
characterized bynx50 andny53,4,5,6. The numerical simu-
lation has been performed forp051 and for a viscosity value
n50.02. The linear growth rate~in lattice units! obtained
from the local dispersion relation~glin! is plotted versus the
spatialx coordinate in Fig. 6 forL5512,nx50, andny53.
The numerically determined growth rate is also shown~the
point atx5L/4!. An estimate of the global eigenvalue can be
obtained by observing that the eigenfunction tends to be lo-
calized during the linear phase aroundx5L/4 as shown in
Fig. 7. Thus the global growth rate is expected to be close to
the linear growth rate evaluated atx5L/4, as indeed shown
in Fig. 6.

The evolution of the pressure profile, in lattice units, at
different y values is shown in Fig. 8. Figures 8~a!, 8~b!, and
8~c! represent the pressure profile, respectively, aty5L/4,
y5L/2, andy53L/4 for different times: at the starting time
~solid line!, during the linear phase~dashed line!, and during
the turbulent phase~dotted line!. The pressure profile does
not show the local flattening, observed in Refs.@5, 8#, since,
for the present simulation, the typical diffusion time, associ-
ated with the turbulent heat flux, is much longer than the
time of the simulation.

The evolution of the turbulent heat flux normalized to
2Te

eq/Dt(Dr )2, qx[L21*dy vxpi , at x5L/4 is shown in
Fig. 9, where the ratio betweenqx and the quasilinear esti-

FIG. 4. Equilibrium macroscopic variables vs
t ~in lattice units!, at the point~x5L/4, y5L/4!,
obtained by a LBE simulation withL5512,
peq5p0 sin(4px/L), p051, B050.1, r0524, and
n50.02. The macroscopic variables are the pres-
surep ~a!, thex,y components of the momentum
densityJx ,Jy , respectively~bc!, and the density
fluctuationr̃5r2r0 ~d!.

4390 54G. FOGACCIA, R. BENZI, AND F. ROMANELLI



mate is plotted vs time. The quasilinear estimate of the heat
flux is derived on the basis of the usual mixing-length argu-
ment by assuming a diffusive heat fluxqx

qlin5xan“peq, with
xan'g/k x

2, g being the linear growth rate andkx being an
estimate of the average wave vector of the perturbation. In
the present case,kx512p/L has been assumed. As shown in

Fig. 9, the heat flux increases during the linear phase ap-
proaching the quasilinear value att52000. In the turbulent
phase, the heat flux decreases and reaches at saturation a
value that is 30% smaller. Such a reduction has been ob-
served also in previous fluid simulations@8# and gyrokinetic
particle simulations@9#. In Ref. @8#, the phenomenon has
been explained in terms of the formation of large-scale co-
herent structures. These structures can be interpreted as
solitary-vortex solutions of the inviscid equations and are

FIG. 5. Temporal behavior of the macro-
scopic variables, in lattice units, at the point~x
5L/4, y5L/4!, in the presence of the ITG mode.
A nonuniform magnetic field
B05B̂0@11eB cos(2px/L)# with B̂050.1,
eB50.1, L5512, n50.02, and a starting density
perturbation r̃5(kx ,ky

@r1 sin(kxx1kyy)
1r2 cos(kxx1kyy)# with wave numbersnx50,
ny53,4,5,6 have been considered. The figure
shows the same quantities as in Fig. 4.

FIG. 6. Linear growth rate vs thex coordinate in lattice units
~solid line! for a starting density perturbation with wave numbers
nx50, ny53. The corresponding value of the numerical growth rate
is also shown~point atx5128!.

FIG. 7. Linear mode structure at the end of the linear phase. The
variables plotted are expressed in lattice units.
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characterized by a turbulent heat flux that exactly vanishes.
Large-scale structures are also observed in the present

simulations as shown in Fig. 10, where the contour plots of
pressure and density are shown att56000. From these re-
sults we can conclude that the LBE algorithm correctly re-
produces the turbulent dynamics.

VI. CONCLUSION

A lattice Boltzmann algorithm, which simulates the
plasma turbulence driven by the ion temperature gradient
and by the curvature of the equilibrium magnetic field, has
been developed. The algorithm reproduces the ion continu-
ity, momentum, and pressure equations in three dimensions,
with the electrons being described by the adiabatic response.
The magnetic field term produces long-wavelength numeri-
cal instabilities, which can be suppressed by inserting a cor-
rective term that enters the momentum equation at the sec-
ond order inDt and so does not alter the form of the fluid
equations in the continuous limitDt→0. Short-wavelength
instabilities, coming from the finite-Larmor-radius term, are
suppressed by performing a smoothing of the velocity fields,
over a radial extent of orderri . Then, the finite value of the
viscosity can be chosen of the same order of the value that is
needed to obtain numerically stable Navier-Stokes simula-
tions.

The 2D limit has been analyzed. In the linear phase the
growth rate obtained from the lattice Boltzmann simulations

FIG. 9. Ratio between the heat fluxqx[L21*dy vxpi and the
quasilinear estimate vs time~in lattice units! at x5L/4, with
L5512. The quasilinear estimateqx

qlin5xan“peq, with xan'g/k x
2,

g being the linear growth rate, is evaluated for an equilibrium pres-
sure profilepeq5p0 sin(4px/L), with p051, and an average wave
vector of the perturbationkx512p/L.

FIG. 8. Evolution of the pressure profile at differenty values~in lattice units!: ~a! y5L/4, ~b! y5L/2, and~c! y53L/4, with L5512. The
solid line is the pressure profile at the starting time, the dashed line is the pressure during the linear phase~t52000!, and the dotted line is
the pressure profile during the turbulent phase~t56000!.
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is in agreement with the growth rate obtained from the linear
theory. In the nonlinear phase the relaxation towards a mar-
ginally stable profile is observed. A complete discussion of
the dynamics of the turbulent phase is planned to be pre-
sented in a future paper. For a LBE simulation followed up
to 6000 time units on a lattice 5123512, the typical CPU

time is about 71 h on an IBM RISC/6000 Model No. 370 and
the necessary memory region is about 23 Mbytes.
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FIG. 10. Contour plots of the~a! pressure and
~b! electrostatic potential in lattice units at
t56000.
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